Phosphorylation of highly conserved neurofilament medium KSP repeats is not required for myelin-dependent radial axonal growth.
نویسندگان
چکیده
Neurofilament medium (NF-M) is essential for the acquisition of normal axonal caliber in response to a myelin-dependent "outside-in" trigger for radial axonal growth. Removal of the tail domain and lysine-serine-proline (KSP) repeats of NF-M, but not neurofilament heavy, produced axons with impaired radial growth and reduced conduction velocities. These earlier findings supported myelin-dependent phosphorylation of NF-M KSP repeats as an essential component of axonal growth. As a direct test of whether phosphorylation of NF-M KSP repeats is the target for the myelin-derived signal, gene replacement has now been used to produce mice in which all serines of NF-M's KSP repeats have been replaced with phosphorylation-incompetent alanines. This substitution did not alter accumulation of the neurofilaments or their subunits. Axonal caliber and motor neuron conduction velocity of mice expressing KSP phospho-incompetent NF-M were also indistinguishable from wild-type mice. Thus, phosphorylation of NF-M KSP repeats is not an essential component for the acquisition of normal axonal caliber mediated by myelin-dependent outside-in signaling.
منابع مشابه
Neurofilament Phosphorylation during Development and Disease: Which Came First, the Phosphorylation or the Accumulation?
Posttranslational modification of proteins is a ubiquitous cellular mechanism for regulating protein function. Some of the most heavily modified neuronal proteins are cytoskeletal proteins of long myelinated axons referred to as neurofilaments (NFs). NFs are type IV intermediate filaments (IFs) that can be composed of four subunits, neurofilament heavy (NF-H), neurofilament medium (NF-M), neuro...
متن کاملLocal Control of Neurofilament Accumulation during Radial Growth of Myelinating Axons in Vivo
The accumulation of neurofilaments required for postnatal radial growth of myelinated axons is controlled regionally along axons by oligodendroglia. Developmentally regulated processes previously suspected of modulating neurofilament number, including heavy neurofilament subunit (NFH) expression, attainment of mature neurofilament subunit stoichiometry, and expansion of interneurofilament spaci...
متن کاملVariation of the neurofilament medium KSP repeat sub-domain across mammalian species: implications for altering axonal structure.
The evolution of larger mammals resulted in a corresponding increase in peripheral nerve length. To ensure optimal nervous system functionality and survival, nerve conduction velocities were likely to have increased to maintain the rate of signal propagation. Increases of conduction velocities may have required alterations in one of the two predominant properties that affect the speed of neuron...
متن کاملNF-M is an essential target for the myelin-directed “outside-in” signaling cascade that mediates radial axonal growth
Neurofilaments are essential for acquisition of normal axonal calibers. Several lines of evidence have suggested that neurofilament-dependent structuring of axoplasm arises through an "outside-in" signaling cascade originating from myelinating cells. Implicated as targets in this cascade are the highly phosphorylated KSP domains of neurofilament subunits NF-H and NF-M. These are nearly stoichio...
متن کاملExpansion of neurofilament medium C terminus increases axonal diameter independent of increases in conduction velocity or myelin thickness.
Maturation of the peripheral nervous system requires specification of axonal diameter, which, in turn, has a significant influence on nerve conduction velocity. Radial axonal growth initiates with myelination, and is dependent upon the C terminus of neurofilament medium (NF-M). Molecular phylogenetic analysis in mammals suggested that expanded NF-M C termini correlated with larger-diameter axon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 5 شماره
صفحات -
تاریخ انتشار 2009